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Skew-Symmetric Functions on the Hyperboloid and 
Quantum Measures 

Marjan Matvejchuk t 
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Measures on the logic of J-projections on an indefinite metric space of dimension 
two are studied. 

I .  I N T R O D U C T I O N  

A quantum logic ( =  orthomodular  poset) is a set E with a partial order 
-< and a unary operat ion • such that (i) E possesses a least and a greatest  
e lement ,  0 and 1, 0 4: 1; (ii) a <- b implies  b I <- a ±, Va,  b • E; (iii) (a±) ± 
= a , k / a  • E ; ( i v )  i f a - - < b ,  t h e n b  = a v ( b ^ a ± ) .  

In Matve jchuk  (1995b),  a universal  method for construct ing projection 
quantum logics was given. Let  @ be a quantum logic of  projections on a 
Hilber t  space  H with the order  p <-- q i f f p q  = qp = p and o r thocomplementa -  
tion p± --  I - p.  Note  that p = q + e, p,  q, e • @, implies  eq = qe = O. 

A quantum measure ( =  finite addit ive measure)  is a function ix: @ ---) C 
such that ix(e ÷ q) = Ix(e) + ix(q) whenever  eq = qe = 0. I f  ix --> 0 
and Ix(I) = 1, then Ix is said to be a probabili ty measure ( =  quantum 

probabili ty measure). 
Problem: Give  a descript ion of  quantum measures  on a quantum logic 

o f  projections,  is there an extension o f  a quantum measure  to a linear functional 
on the algebra o f  bounded operators  generated by @? 

An important  interpretation of  a quantum logic is the set I-I o f  all 
or thogonal  projections in a v o n  N e u m a n n  algebra At (or, more  generally, in 
a JW-a lgebra  or an AW*-algebra) .  The  M a c k e y - G l e a s o n  problem asked: 
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when can a countably additive probability measure on 17 in a separable 
Hilbert space be extended to a bounded linear functional on ~ ?  

We have the following theorem: 

Let JI/t be a JW-algebra (an AW*-algebra which has a faithful normal 
center-valued trace) which has no direct summand of the type 12. Let Ix: 17 

C be a bounded quantum measure on the set of all orthogonal projections 
in ~t. Then Ix has a unique extension to a bounded linear functional on At. 

A sketch of the proof was given in Matvejchuk (1988). A complete 
solution was obtained in Matvejchuk (1987, 1995). 

There is an unhappy history of incomplete proofs and fallacious argu- 
ments associated with attempts to generalize Gleason's theorem. The above 
theorem was repeated in a particular case of yon Neumann algebras by Bunce 
and Wright (1992a,b). 

The first major step was the work of Gleason (1957). His profound work, 
which was fundamental for all subsequent advances in this area, considered 
positive, countably additive quantum measure on B(H), where H is a separable 
Hilbert space and dim H --> 3. The solution for a yon Neumann algebra of 
type III or II= and for a positive quantum measure was first given by the 
conjunction of the work of Christensen (1982) and the one for countably 
additive positive measures for semifinite von Neumann algebras (Matvejchuk, 
1980). Later, this result was repeated with a similar proof (Yeadon, 1993). 

The problem of the construction of a quantum field theory leads to the 
indefinite metric spaces (Dadashan and Horujy, 1983). Indefinite metric 
spaces yield a wide class of projection quantum logics (Matvejchuk, 1995b). 
In the indefinite case, the set ~ of all J-orthogonal projections serves as an 
analog to the logic 11 There is an indefinite analog to the Gleason theorem 
(Matvejchuk, 1991a, b; also see Matvejchuk, n.d.): 

Let H be a J-space, dim H --> 3, and let Ix: ~ --~ ~ be an indefinite 
measure. Then there exist a J-self-adjoint trace class operator T and a semitrace 
Ixo such that I~(p) = Tr(Tp) + Ix0(P), Vp E ~ .  Moreover, if the indefinite 
rank of H is equal to + ~ ,  then Ix0(" ) = 0. 

2. SOME NOTATION 

Let Hbe  a space with an indefinite metric [., .], a canonical decomposition 
H = H+[q-]H -,  and a canonical symmetry J. Following the terminology of 
Azizov and Iokhvidov (1989), H is a Krein space (sometimes H is called a 
J-space). H is a Hilbert space with respect to the inner product (x, y) = [Jx, 
y]. Note that (x, y) = [x÷, y÷] - [x_, y_], where x÷, y+ E H ÷, x_, y_ E H - ,  
and x = x+ + x_, y = y+ + y_. There exist orthogonal projections Q+ and 
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Q-  such that I = Q+ + Q- ,  J = Q÷ - Q- ,  and Q+H = H ÷, Q - H  = H - ,  
Ix, y] = (Jx, y), Vx, y ~ H. Conversely, let H be a Hilbert space with the 
inner product (., .h and let P be an orthogonal projection with 0 < P < I. 
Then H, with respect to [x, Y]t -~ ((2P - / ) x ,  Y)b is a J r space  (Ji = 2Q - 
I)  with the indefinite metric [., .]1. 

Let b ~ B(H). It is easy to see that p is J-setf-adjoint (i.e., [bx, y] = 
[x, by], Vx, y E H) ¢=~ b = Jb*J. Note that b is J-self-adjoint ¢:~ bJ is self- 
adjoint in the Hilbert space H. Every b ~ B(H) is the sum, b = ½(b + Jb*J) 
+ (1/2i)(b - Jb*J) of J-self-adjoint operators. Let @ = {p ~ B(H): p2 = 
p and [px, y] = Ix, py], Vx, y ~ H }. The set 
z ~ H is said to be positive (negative) if [z, z] 
= F + 71 F - , w h e r e F  ÷ ~ { f e  H: [ f , f ]  = 1} 
- I }  is an analog to the unit sphere S = {f  

is a quantum logic. A vector 
> 0 ([z, z] < 0). The set F 
and F -  = {f  ~ H: [f, f ]  = 
H: if, f )  = 1}. Every one- 

dimensional projection in @ can be represented in the form p / =  [f, f ]  [., f ] f ,  
f ~ F, and IIpAI = IlYll 2. Hence psJ41psJII is the orthogonal projection onto 
subspace {hf}~EC. Note t h a t f  E F + ¢=~ Jpf >- 0, a n d f  E F -  ¢:* Jp/<- O. 
Denote by 9~ the set of  all one-dimensional projections in 9 .  

Suppose that H = R 3 with the Euclidean inner product. Let P be the 
orthogonal projection onto the axis OX, and J~ = 2P - I. Then F ÷ is the 
two-sheeted hyperboloid, {(x, y, z) ~ g3:  x 2 - (y2 + z 2) = 1}, and F -  = 
{(X, y, Z) E R 3 : y 2  + z 2 _ x 2 = 1 } is the hyperboloid of  one sheet. Therefore, 
in the indefinite case ~' could be called a hyperbolic logic. 

3. T H E  MAIN RESULTS 

It follows from the above that type 12 is the only obstruction in the 
problem of  the description of a quantum measure, having a positive answer 
for all other cases. Why does it fail for Mz(C), the algebra of two-by-two 
complex matrices? 

Let H be a two-dimensional complex Krein space. Let e+ E H ÷ and e_ 
H -  be such that (e+, e+) = ([e+, e+]) = 1 and (e_, e_) = 1. By fixing the 

orthonormal base e+, e_ in the underlying Hilbert space, we may identify 
the algebra aft of  all linear operators on H with M2(C). When 

WI 1 WI2 / 
W = \w2~ w2 V 

we define "rW = ½(wil + W22)- We have J = (4 

an operator T is J-self-adjoint ¢::, T = 

o I) in the base e.,  e_. Hence 

( o 
- b  + ic d 

where a, b, c, d ~ R. Let ~ h  be the set of all J-self-adjoint operators, and 
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Remark  3. 

Remark  4. 
a --> 1, and  JP 

Remark  5. 
- b ,  - c )  - I). 

le t  .4,{0 - -  {T • .kth: "r(T) = 01.  W e  h a v e  T = To + "r(T)L w h e r e  To • .kto, 
V T  • At h . L e t S t  - -  (°1 4) a n d S 2 - - -  (o ~ ) . T h e n  T = - c ( T ) I +  aJ  + bSt 
+ cS2, V T  • d~ h. Let  t~ be  the m a p  (a, b, c) --> aJ  + bSi + cS2 f r o m  R 3 
on to  d/t 0. It is e v i d e n t  that  d2 is a c o n t i n u o u s  l i nea r  func t ion  on  R 3 and  t~(a, 
b, c)*  = ~ ( a ,  - b ,  - c ) .  It is e a s y  to ve r i fy  that  II~(a,  b, c)][ = l a l  + Ib + 
ic l .  H e n c e  the f o l l o w i n g  p r o p o s i t i o n  ho lds .  

Proposition 1. T h e  func t ion  t~ r e a l i z e s  a b i j e c t i o n  o f  the  g y r o s c o p e  { (a,  
b, c):  l a l  + Ib + icl = 1} on to  the  uni t  s p h e r e  o f  d/t0. 

3.1 .  P r o p e r t i e s  o f  the  M a p  ~ o n  F + = {(a,  b,  c):  a z - b 2 - c z = 1} 

Lemma 2. ad + bSt + cS2 = P - P± ( =  2 P  - I) ,  w h e r e  P • @t ¢=> 
a 2 - b 2 - c 2 = 1. 

Proo f  Le t  a J  + bSl + cS2 = 2P - I, w h e r e  P • @l.  T h e n  

P = 2  - b  + ic 1 - 

A s P 2  = P, w e h a v e a  2 -  b 2 -  c 2 = 1. 

C o n v e r s e l y ,  le t  a 2 - b 2 - c 2 = 1. Put  

P=-- - b  + ic 1 - 

It is e a s y  to  see  that  p2 = p and  P = JP*J. H e n c e  P • ~ and  2 P  - ! = 
M +  bS~ + cSv  • 

IIPII = I I Je l l  = l a l  w h e n  O(a ,  b, c)  = 2 P  - I, P e ~ ' l .  

Le t  O(a,  b, c)  = 2 P  - L w h e r e  P • ~1 .  T h e n  JP >- 0 ¢:~ 
< - - 0 - a -  < - 1 .  

L e t  a 2 - b 2 - c 2 = 1. T h e n  (½(t~(a, b,  c)  - / ) )±  = ½ ( t ~ ( - a ,  

It f o l l o w s  f rom L e m m a  3 that  ~ m a p s  the h y p e r b o l o i d  F + o f  R 3 on to  

{2P - I: P e ~ l } .  B y  R e m a r k  5, w h e n  x e F ÷ and  0(x)  = 2 P  - L then  
~ ( - x )  = 2 P  ± - I. 

Le t  V be the set  o f  al l  r e a l - v a l u e d  func t i ons  ~b on  F + in R 3, such  tha t  
+ ( - x )  = -~b(x ) ,  ' qx  • F +. F o r  e a c h  ~b • V w e  d e f i n e  I~,  on  ~ '  C M2(C)  
by  2 ~ , ( P )  - -  + ( 0 - 1 ( 2 P  - / ) )  + 1 w h e n e v e r  P • ~ l  and  i~ , (0)  = 0, Ix , ( / )  
= 1. N o t e  tha t  
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ix,l,(p) _ Ix+(p_L) = ½[qb(t[,-l(p _ pJ.)) + 1 - ~b(~-l(P -c - P)) - 1] 

= ½[+(+- l (p  _ p.c)) _ +(~- , (pJ .  _ p))] = + ( ~ - , ( p  _ P ' ) )  

We have 

2tx,(P) + 2Ix,(P ' - )  = dO(t~-~(2P - /)) + dO(-t~-~(2P - /)) + 2 

= 2 ,  VP  e ( 9 1  

Thus ix,(P) + IX,(P±) = Ix,(/). Hence Ix, is a quantum measure. Also, 
2Ix,(P) --  - 1 + 1 = 0 if I do(x) I --< 1. In this case, Ix, is a quantum probability 
measure on the J -or thogonal  projections (9 in M. 

Conversely,  given a quantum measure ix on (9, we may define dO on F ÷ 
as follows. For  each x e F + there is P e (91 such that ~(x) = 2P  - I. Let 

dO(x) = Ix(P) - IX(P±). Then we see that dO(-x) = -dO(x). In addition, I do(x) I 
<- Ix(P) + Ix(P J-) = Ix(/) = 1 if IX is a positive probability measure. It is 
easy to verify that ix4, = Ix. We have thus established the following: 

Theorem 6. For each dO ~ V and IdOl --< 1, Ix+ is a quantum probability 
measure on (9 C M. Conversely,  every quantum probability measure on (9 
C M arises in this way. 

Put (9+ =- {P E (91: JP > 0} and (9 -  = {(9 E ((gz: JP ~ 0}. 

Example Z Let do E V be such that dO(a, b, c) --= 1 if a >- 1. Then ix,/ 
(9+ - 1 and Ix,/(9- -= 0. 

In the terminology o f  (Matvejchuk,  1991a,b, n.d.), each measure with 
this property is said to be a semitrace ( =  semiconstant) measure. 

Theorem 8. Let do E V. Then ix+ is cont inuous if  and only if do is 
continuous. 

Proof  We may identify F ÷ with {2P - I: P ~ (91}. Since 0 and I are 
isolated points in ~ ,  Ix+ is continuous at 0 and I. Let P E @1. Let lIP, - PI[ 
--> 0. Then 11 (2P,  - / )  - (2P - / )  1[ ~ 0. I f  dO is continuous at 2P  - L then 

do(2P, - /) --~ do(2P - /). So 

ix+(P,) = ½[+(2P,  - /) + 1] ---)½[do(2P - / )  + l] = Ix+(P) 

So ix+ is continuous at P. 
Conversely, suppose that Ix+ is continuous at P. Then do(2Pn - /) + 1 

--~ do(2P - /) + 1. So do is continuous at 2P  - I. • 
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3.2. Properties of the Operators O(a, b, c), (a, b, c) • K -= {(a, b, c): 
a z = b 2 + c 2} 

It is easy to verify that the operator ,(, e;0) 
eo ~ "~ e-iO 

is an orthogonal projection (¢  0), JPoJ = Po+~ [i.e., (JPo)* = JPo+~] and 
Po, Po+~ are mutually orthogonal. Hence (JPo) 2 = JPoJPo = 0 and JPo • Ato. 

Conversely, let 

T=- - b  + ic - ' 

Then J T  is a self-adjoint operator, a 2 = b 2 + c z, and IIJTII = 2 l a l .  Hence Q 
=-- JT/(2a) is an orthogonal projection, and JQJ  and Q are mutually orthogonal 
projections. Thus we have proved the following 

Lemma 9. The map 0 realizes a bijection of the cone K onto { T • Ato: 
T 2 = 0}. If (a, b, c) e K and (a, b, c) 4= (0, 0, 0), then II0(a, b, c) ll = 21 a I, 
Q =- [ll(2a)]JO(a, b, c) is an orthogonal projection, and JQJQ = O. 

We see that 

( a e i : )  
A -= Ib + ic[ _e_iO 

= lb + icl _e_i  o 
e;) a ,( ,  :e:)) 

+ 2 e-i° 

Let P0 be the orthogonal projection. Then A = I b + ic I ((a + l)JPo + 

(a - 1)JP0+~). The operator JA is self-adjoint and JA = Ib + ic t ( (a  + l)P0 
+ (a - 1)Po+~) is the spectral decomposition for JA. Hence by the uniqueness 
of the spectral decomposition, we have the following. 

Lemma 10. For every A • Ato there exist a unique operator JPo ( • { T 

• Ato: T 2 = 0}) and numbers t, d • R such that A = tJPo + dJP~. 

3.3. The Linearity of a Quantum Measure 

For each 4) e V we define qb on N ~ {(a, b, c): d 2 =- a 2 - b z - c 2 > 

0, d > 0} U {(0, 0, 0)} by +(0, 0, 0) = 0 and, for (a, b, c) :~ (0, 0, 0), +(a, 
b, c) =-- dd~(d-l(a, b, c)). 

Now, consider + such that there exists lim +(x.) = +(y), Vy • K, and 
V{x.} C N, x. ---> y. Let (a, b, c) be such that a 2 - b 2 - c 2 < 0. Put +(a, 
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b, c) --- ~b(al, bl, cO + ~b(a2, b2, C2),  where (a_.i, bi, Ci) ~ K, i = 1, 2, and (a, 
b, c) = (a, b, c) + (a, b, c). By definition, +(ta, tb, tc) = [~(a, b, c). 

Let T E .kth and T = "r(T)l + To. Then To E A/to and there is a unique 
triple (a, b, c) such that t~(a, b, c) = To. Put g+(T) ~- "r(T) + d~(~-l(To)). 
L e t T =  aP + bP ±, P ~ ~'l. Then 

1 
2 [ a ( P -  P±) + a + b(P x -  P) + b] 

Hence 

~ , ( T )  - - -  
a + b  

2 

a + b  a - b  - - +  
2 2 

~b(~-'(2P - /)) 

a 
= ~ [~b(~-J(2P - / ) )  + 1] + [1 - ~b(~-L(2P - / ) ) ]  

a b 
= ~ [~b(~-~(2P - / )  + 1)] + ~ [~b(~- '(2e ~- - / )  + 1)] 

= aix+(P) + bix+(P ±) 

Thus ~+ is an extension of IX, over Alh. Put 
I 

~,I,(T) = ~+(-~(T + JT*J) + ~,I,(~(T - JT*J)), 'v'T ~ At 

So ~ ,  is linear (continuous) on At if and only if d~ is linear (continuous) on 
R 3. We have thus established the following: 

Theorem 11. The quantum measure Ix+ has a linear extension to .g  if 
and only if + has a linear extension to R 3. The functional ~ ,  is continuous 
on ~ if and only if ~b is continuous on R 3. 

A measure IX is said to be linear if there is a linear functional f~. on .g  
such that IX = f~ on ~ .  

Theorem 12. Let + ~ V be a bounded function. Then IX, is a linear 
quantum measure if and only if d~ = 0. If 4' = 0, then Ix+ = 'r on ~ .  

Proof Let ~__E V be a bounded function. Then by definition, + = 0 
on K (and hence + = 0 on R3\N). Let Ix, be a linear measure. By Theorem 
11, ~b has a linear extension. For every (a, b, c) ~ F ÷ there is (al, bt, ct), 
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(a2, b2, c2_) ~ K such that_ (a, b, c) = (al,  bl, cl)  + (a2, b2, c2). Hence  ~b(a, 
b, c) = ~b(a,, bt, ct)  + 6(a2, b2, c2) = 0. 

Conversely,  let qb = 0. By definition, Ix~,(P) = 1/2, 'v'P ~ ~1.  Hence  
1~, = ' t o n @ .  • 

Let T E d//t h, T ~ I, and "fiT) = 1. Then  the function qb, where qb(O-l(P 
_ p.L)) ~ "r(T(P - p.L)), V P  ~ ~'1, is unbounded on F ÷. 

3.4. The Relationship Between Measures on the Logics @ and H 

It easy to verify that {PJ/HPJH: P ~ ~ l }  = l-I\{P0}. Let IX be a linear 
measure on ~', and let f~ be the linear function such that I~(P) = f~(P),  V P  

@. Put 

v~ ---- ~ Ix(P) = f~ (PJ)J , V P  e ~ t  

and v~(0) = 0, v~(/) = 1. Then it is clear that vt, has a unique extension 
over  H, and this extension is a linear measure on IT 
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